Abstract

Commonsense reasoning based on knowledge graphs (KGs) is a challenging task that requires predicting complex questions over the described textual contexts and relevant knowledge about the world. However, current methods typically assume clean training scenarios with accurately labeled samples, which are often unrealistic. The training set can include mislabeled samples, and the robustness to label noises is essential for commonsense reasoning methods to be practical, but this problem remains largely unexplored. This work focuses on commonsense reasoning with mislabeled training samples and makes several technical contributions: 1) we first construct diverse augmentations from knowledge and model, and offer a simple yet effective multiple-choice alignment method to divide the training samples into clean, semi-clean, and unclean parts; 2) we design adaptive label correction methods for the semi-clean and unclean samples to exploit the supervised potential of noisy information; and 3) finally, we extensively test these methods on noisy versions of commonsense reasoning benchmarks (CommonsenseQA and OpenbookQA). Experimental results show that the proposed method can significantly enhance robustness and improve overall performance. Furthermore, the proposed method is generally applicable to multiple existing commonsense reasoning frameworks to boost their robustness. The code is available at https://github.com/xdxuyang/CR_Noisy_Labels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.