Abstract

We study in this paper min max robust combinatorial optimization problems for an uncertainty polytope that is defined by knapsack constraints, either in the space of the optimization variables or in an extended space. We provide exact and approximation algorithms that extend the iterative algorithms proposed by Bertsimas and Sim (2003). We also study the limitation of the approach and point out NP-hard situations. Then, we approximate axis-parallel ellipsoids with knapsack constraints and provide an approximation scheme for the corresponding robust problem. The approximation scheme is also adapted to handle the intersection of an axis-parallel ellipsoid and a box.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.