Abstract

The design of feedback controllers to accurately and robustly regulate the properties of electrically stimulated muscle is considered. Reliable, precise control is necessary for the development of neuroprosthetic devices to improve gradation and repeatability of force. A digital closed-loop controller has been developed which regulates muscle force by modulating the pulsewidth of a constant-amplitude electrical simulation pulse train. This controller has been evaluated in slow- and fast-twitch muscles (cat soleus and plantaris) in acute experiments. In isometric tests, it was found to regulate muscle force with low sensitivity to modeling errors and disturbances while satisfying stability, repeatability, linearity, and step/ramp response criteria over a wide range of commands.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.