Abstract

IEEE 1588, built on the classical two-way message exchange scheme, is a popular clock synchronization protocol for packet-switched networks. Due to the presence of random queuing delays in a packet-switched network, the joint recovery of the clock skew and offset from the timestamps of the exchanged synchronization packets can be treated as a statistical estimation problem. In this paper, we address the problem of clock skew and offset estimation for IEEE 1588 in the presence of possible unknown asymmetries between the deterministic path delays of the forward master-to-slave path and reverse slave-to-master path, which can result from incorrect modeling or cyber-attacks. First, we develop lower bounds on the mean square estimation error for a clock skew and offset estimation scheme for IEEE 1588 assuming the availability of multiple master-slave communication paths and complete knowledge of the probability density functions (pdf) describing the random queuing delays. Approximating the pdf of the random queuing delays by a mixture of Gaussian random variables, we then present a robust iterative clock skew and offset estimation scheme that employs the space alternating generalized expectation-maximization (SAGE) algorithm for learning all the unknown parameters. Numerical results indicate that the developed robust scheme exhibits a mean square estimation error close to the lower bounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call