Abstract
Several agencies such as the US Department of Homeland Security (DHS) seek to improve the detection of illegal threats and materials passing through Ports of Entry (POE). A combined hardware/software solution that is portable, non-ionizing, handheld, low cost, and fast would represent a significant contribution towards that goal as existing systems do not fulfil many or all of these requirements. To design such a system, Quantum Ventura partnered with Bodkin Design and Engineering to combine long-wave infrared (LWIR) hyperspectral imaging (HSI) with convolutional neural networks (CNNs), implemented on full precision GPUs and neuromorphic computing modules. Our capability study showed that our system can accurately detect and classify contraband in a variety of situations, including varied backgrounds, temperatures, and purities. With a small size, weight, power and cost (SWaP-C) envelope, neuromorphic computing implementations of CNNs showed promising results, though not as well as full precision results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.