Abstract
To address the limitations of existing methods of short-text entity disambiguation, specifically in terms of their insufficient feature extraction and reliance on massive training samples, we propose an entity disambiguation model called COLBERT, which fuses LDA-based topic features and BERT-based semantic features, as well as using contrastive learning, to enhance the disambiguation process. Experiments on a publicly available Chinese short-text entity disambiguation dataset show that the proposed model achieves an F1-score of 84.0%, which outperforms the benchmark method by 0.6%. Moreover, our model achieves an F1-score of 74.5% with a limited number of training samples, which is 2.8% higher than the benchmark method. These results demonstrate that our model achieves better effectiveness and robustness and can reduce the burden of data annotation as well as training costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.