Abstract
Change point problem is one of the hot issues in statistics, econometrics, signal processing and so on. LAD estimator is more robust than OLS estimator, especially when datasets subject to heavy tailed errors or outliers. LASSO is a popular choice for shrinkage estimation. In the paper, we combine the two classical ideas together to put forward a robust detection method via adaptive LAD-LASSO to estimate change points in the mean-shift model. The basic idea is converting the change point estimation problem into variable selection problem with penalty. An enhanced two-step procedure is proposed. Simulation and a real example show that the novel method is really feasible and the fast and effective computation algorithm is easier to realize.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.