Abstract

Communication games are one of the widely used tools that are designed to demonstrate quantum supremacy over classical resources in which two or more parties collaborate to perform an information processing task to achieve the highest success probability of winning the game. We propose a specific two-party communication game in the prepare-measure scenario that relies on an encoding-decoding task of specific information. We first demonstrate that quantum theory outperforms the classical preparation noncontextual theory and the optimal quantum success probability of such a communication game enables the semi-device-independent certification of qubit states and measurements. Further, we consider the sequential sharing of quantum preparation contextuality and show that, at most, two sequential observers can share the quantum advantage. The suboptimal quantum advantages for two sequential observers form an optimal pair which certifies a unique value of the unsharpness parameter of the first observer. Since the practical implementation inevitably introduces noise, we devised a scheme to demonstrate the robust certification of the states and unsharp measurement instruments of both the sequential observers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.