Abstract

Abstract-Recently, a robust version of the linear decorrelating detector (LDD) based on the Huber's M-estimation technique has been proposed. In this paper, we first demonstrate the use of a three-layer recurrent neural network (RNN) to implement the LDD without requiring matrix inversion. The key idea is based on minimizing an appropriate computational energy function iteratively. Second, it will be shown that the M-decorrelating detector (MDD) can be implemented by simply incorporating sigmoidal neurons in the first layer of the RNN. A proof of the redundancy of the matrix inversion process is provided and the computational saving in realistic network is highlighted. Third, we illustrate how further performance gain could be achieved for the subspace-based blind MDD by using robust estimates of the signal subspace components in the initial stage. The impulsive noise is modeled using non-Gaussian alpha-stable distributions, which do not include a Gaussian component but facilitate the use of the recently proposed geometric signal-to-noise ratio (G-SNR). The characteristics and performance of the proposed neural-network detectors are investigated by computer simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.