Abstract

Directed acyclic graphs (DAGs), which offer systematic representations of causal relationships, have become an established framework for the analysis of causal inference in epidemiology, often being used to determine covariate adjustment sets for minimizing confounding bias. DAGitty is a popular web application for drawing and analysing DAGs. Here we introduce the R package 'dagitty', which provides access to all of the capabilities of the DAGitty web application within the R platform for statistical computing, and also offers several new functions. We describe how the R package 'dagitty' can be used to: evaluate whether a DAG is consistent with the dataset it is intended to represent; enumerate 'statistically equivalent' but causally different DAGs; and identify exposure-outcome adjustment sets that are valid for causally different but statistically equivalent DAGs. This functionality enables epidemiologists to detect causal misspecifications in DAGs and make robust inferences that remain valid for a range of different DAGs. The R package 'dagitty' is available through the comprehensive R archive network (CRAN) at [https://cran.r-project.org/web/packages/dagitty/]. The source code is available on github at [https://github.com/jtextor/dagitty]. The web application 'DAGitty' is free software, licensed under the GNU general public licence (GPL) version 2 and is available at [http://dagitty.net/].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.