Abstract

This paper investigates the problem of horizontal-plane trajectory tracking for fixed-wing unmanned aerial vehicles(UAVs) subjected to external disturbances and uncertainties including coupling and unmodeled dynamics. Under the assumption there exist ideal inner-loop controllers, the 12-state model is reduced to a 6-state translational motion model, which is described by a group of simplified nonlinear equations with equivalent disturbances via introducing general aerodynamic models. Then a new cascaded control structure consisting of an outer-loop controller for position control and inner-loop controllers for attitude and thrust control is proposed. Based on feedback linearization technology and signal compensation theory, the proposed controller applied for position control incorporates a nominal linear time-invariant controller and a robust compensator, the latter of which is introduced to restrain the effects of uncertainties and disturbances. The robust performance of the closed-loop system is proved. Actual experimental results conducted on a small fixed-wing aircraft demonstrate that the proposed control approach is effective.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call