Abstract

A DC/DC boost converter is a highly nonlinear system and subject to various uncertainties, such as load change, input voltage variation, and parametric uncertainties. In order to achieve a robust performance for the converter's current and voltage output responses against the uncertainties, this paper proposes the use of a robust cascade controller based on a reduced-order proportional-integral observer (PIO). In the proposed design, a cascade approach is adopted, where an integral-proportional (IP) controller and a proportional-integral (PI) controller are constructed to set a nominal, desired dynamic response for the closed-loop system. A theoretical analysis, based on the singular perturbation theory, is presented, to confirm the desired approximation of the augmented system with the PIO to the nominal system without the uncertainties. Simulation results suggest that the additional compensation using dual PIOs can be effectively used to improve the robust performance against load change, input voltage variation, and parametric uncertainties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.