Abstract
This paper presents a robust branch-cut-and-price algorithm for the Capacitated Minimum Spanning Tree Problem (CMST). The variables are associated to q-arbs, a structure that arises from a relaxation of the capacitated prize-collecting arborescence problem in order to make it solvable in pseudo-polynomial time. Traditional inequalities over the arc formulation, like Capacity Cuts, are also used. Moreover, a novel feature is introduced in such kind of algorithms: powerful new cuts expressed over a very large set of variables are added, without increasing the complexity of the pricing subproblem or the size of the LPs that are actually solved. Computational results on benchmark instances from the OR-Library show very significant improvements over previous algorithms. Several open instances could be solved to optimality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.