Abstract

Brain-Computer Interface (BCI) is a technology that translates the brain electrical activity into a command for a device such as a robotic arm, a wheelchair or a spelling device. BCIs have long been described as an assistive technology for severely disabled patients because they completely bypass the need for muscular activity. The clinical reality is however dramatically different and most patients who use BCIs today are doing so as part of constraining clinical trials. To achieve the technological transfer from bench to bedside, BCI must gain ease of use and robustness of both measure (electroencephalography [EEG]) and interface (signal processing and applications). The Robust Brain-computer Interface for virtual Keyboard (RoBIK) project aimed at the development of a BCI system for communication that could be used on a daily basis by patients without the help of a trained team of researchers. To guide further developments clinicians first assessed patients’ needs. The prototype subsequently developed consisted in a 14 felt-pad electrodes EEG headset sampling at 256Hz by an electronic component capable of transmitting signals wirelessly. The application was a virtual keyboard generating a novel stimulation paradigm to elicit P300 Evoked Related Potentials (ERPs) for communication. Raw EEG signals were treated with OpenViBE open-source software including novel signal processing and stimulation techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call