Abstract

Classification of cell types in context of the architecture in tissue specimen is the basis of diagnostic pathology and decisions for comprehensive investigations rely on a valid interpretation of tissue morphology. Especially visual examination of bone marrow cells takes a considerable amount of time and inter-observer variability can be remarkable. In this work, we propose a novel rotation-invariant learning scheme for multi-class Echo State Networks (ESNs), which achieves very high performance in automated bone marrow cell classification. Based on representing static images as temporal sequence of rotations, we show how ESNs robustly recognize cells of arbitrary rotations by taking advantage of their short-term memory capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.