Abstract
For applications at temperatures of 150°C or above, such as in automotive under the hood electronics and power electronics, a robust dielectric material is necessary for capacitors. In traditional X8R products [Electronic Industries Alliance (EIA) specification, AC/C within ±15% between -55°C and +150°C compared to that at 25°C], the dielectric material is designed for applications up to 150°C. However, at temperatures above 150°C, these typically suffer from degradation of reliability performance and severe reduction in capacitance, particularly under dc bias conditions. Recently, a Class-I dielectric material has been developed using nickel electrodes for high-temperature application up to 200°C. Due to its linear dielectric nature, this material exhibits highly stable capacitance as a function of temperature and voltage. Multilayer ceramic capacitors made from this material can be qualified as X9G with robust reliability. This paper will report electrical properties and reliability test data on these Class-I ceramic capacitors at temperatures ≥ 150°C. In addition, test data from D - E curves and energy density measurements will be reported along with a discussion of possible mechanisms behind the robust reliability of this material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.