Abstract
Hematoxylin and Eosin (H&E) color variation among histological images from different laboratories can significantly degrade the performance of Computer-Aided Diagnosis systems. The staining procedure is the primary factor responsible for color variation, and consequently, the methods designed to reduce such variations are designed in concordance with this procedure.In particular, Blind Color Deconvolution (BCD) methods aim to identify the true underlying colors in the image and to separate the tissue structure from the color information. Unfortunately, BCD methods often assume that images are stained solely with pure staining colors (e.g., blue and pink for H&E). This assumption does not hold true when common artifacts such as blood are present, requiring an additional color component to represent them. This is a challenge for color standardization algorithms, which are unable to correctly identify the stains in the image, leading to unexpected results.In this work, we propose a Blood-Robust Bayesian K-Singular Value Decomposition model designed to simultaneously detect blood and extract color from histological images while preserving structural details. We evaluate our method using both synthetic and real images, which contain varying amounts of blood pixels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.