Abstract

The model introduced in this paper is the first to propose a decentralized robust optimal scheduling of MG operation under uncertainty and risk. The power trading of the MG with the main grid is the first stage variable and power generation of DGs and power charging/discharging of the battery are the second stage variables. The uncertain term of the initial objective function is transformed into a constraint using robust optimization approach. Addressing the Decision Maker’s (DMs) risk aversion level through Conditional Value at Risk (CVaR) leads to a bi-level programming problem using a data-driven approach. The model is then transformed into a robust single-level using Karush–Kahn–Tucker (KKT) conditions. To investigate the effectiveness of the model and its solution methodology, it is applied on a MG. The results clearly demonstrate the robustness of the model and indicate a strong almost linear relationship between cost and the DMs various levels of risk aversion. The analysis also outlines original characterization of the cost and the MGs behavior using three well-known goodness-of-fit tests on various Probability Distribution Functions (PDFs), Beta, Gumbel Max, Normal, Weibull, and Cauchy. The Gumbel Max and Normal PDFs, respectively, exhibit the most promising goodness-of-fit for the cost, while the power purchased from the grid are well fitted by Weibull, Beta, and Normal PDFs, respectively. At the same time, the power sold to the grid is well fitted by the Cauchy PDF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.