Abstract

Bilevel optimization problems embed the optimality of a subproblem as a constraint of another optimization problem. We introduce the concept of near-optimality robustness for bilevel optimization, protecting the upper-level solution feasibility from limited deviations from the optimal solution at the lower level. General properties and necessary conditions for the existence of solutions are derived for near-optimal robust versions of general bilevel optimization problems. A duality-based solution method is defined when the lower level is convex, leveraging the methodology from the robust and bilevel literature. Numerical results assess the efficiency of exact and heuristic methods and the impact of valid inequalities on the solution time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.