Abstract

In this paper we present a duality approach for finding a robust best approximation from a set involving interpolation constraints and uncertain inequality constraints in a Hilbert space that is immunized against the data uncertainty using a nonsmooth Newton method. Following the framework of robust optimization, we assume that the input data of the inequality constraints are not known exactly while they belong to an ellipsoidal data uncertainty set. We first show that finding a robust best approximation is equivalent to solving a second-order cone complementarity problem by establishing a strong duality theorem under a strict feasibility condition. We then examine a nonsmooth version of Newton’s method and present their convergence analysis in terms of the metric regularity condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.