Abstract

This letter proposes a robust beamforming (BF) scheme to enhance physical layer security (PLS) of the downlink of a multibeam satellite system in the presence of either uncoordinated or coordinated eavesdroppers (Eves). Specifically, with knowing only the approximate locations of the Eves, we aim at maximizing the worst-case achievable secrecy rate (ASR) of the legitimate user (LU), subject to the constraints of per-antenna transmit power and quality of service (QoS) requirement of the LU. Since the optimization problem is non-convex, we first adopt the discretization method to deal with the unknown regions of the Eves and then exploit the log-sum-exp function to approximate the objective function. Afterwards, a BF method joint alternating direction method of multipliers (ADMM) with Dinkelbach iteration is presented to solve this non-convex problem. Finally, simulation results verify that our robust BF algorithm can effectively improve the security of multibeam satellite systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.