Abstract

Robust adaptive beamforming (RAB) plays a vital role in modern communications by ensuring the reception of high-quality signals. This paper proposes a deep learning approach to robust adaptive beamforming. In particular, we propose a novel RAB approach where the sample covariance matrix (SCM) is used as the input of a deep 1D Complex-Valued Convolutional Neural Network (CVCNN). The network employs complex convolutional and pooling layers, as well as a Cartesian Scaled Exponential Linear Unit activation function to directly compute the nearly-optimum weight vector through the training process and without prior knowledge about the direction of arrival of the desired signal. This means that reconstruction of the interference plus noise (IPN) covariance matrix is not required. The trained CVCNN accurately computes the nearly-optimum weight vector for data not used during training. The computed weight vector is employed to estimate the signal-to-interference plus noise ratio. Simulations show that the proposed RAB can provide performance close to that of the optimal beamformer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.