Abstract

This paper proposes a mixture of linear dynamical systems model for quantifying the heterogeneous progress of Parkinson's disease from DaTscan Images. The model is fitted to longitudinal DaTscans from the Parkinson's Progression Marker Initiative. Fitting is accomplished using robust Bayesian inference with collapsed Gibbs sampling. Bayesian inference reveals three image-based progression subtypes which differ in progression speeds as well as progression trajectories. The model reveals characteristic spatial progression patterns in the brain, each pattern associated with a time constant. These patterns can serve as disease progression markers. The subtypes also have different progression rates of clinical symptoms measured by MDS-UPDRS Part III scores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.