Abstract

A method for estimating the background under each reflection during integration that is robust in the presence of pixel outliers is presented. The method uses a generalized linear model approach that is more appropriate for use with Poisson distributed data than traditional approaches to pixel outlier handling in integration programs. The algorithm is most applicable to data with a very low background level where assumptions of a normal distribution are no longer valid as an approximation to the Poisson distribution. It is shown that traditional methods can result in the systematic underestimation of background values. This then results in the reflection intensities being overestimated and gives rise to a change in the overall distribution of reflection intensities in a dataset such that too few weak reflections appear to be recorded. Statistical tests performed during data reduction may mistakenly attribute this to merohedral twinning in the crystal. Application of the robust generalized linear model algorithm is shown to correct for this bias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.