Abstract

We present a novel robust control scheme that deals with multi-body spacecraft attitude tracking problems. The control scheme consists of a radial basis function network (RBFN) and a robust controller. By using the finite time convergence property of the terminal sliding mode (TSM), we derive a new online learning algorithm for updating all the parameters of the RBFN that ensures the RBFN has fast approximation for the parameter uncertainties and external disturbances. We design a robust controller to compensate RBFN approximation errors and realise the anticipative stability and performance properties. We can also achieve closed-loop system stability using Lyapunov stability theory.No detailed knowledge of the non-linear dynamics of the spacecraft is required at any point in the entire design process, and the proposed robust scheme is simple and effective and can be applied to more complex systems. Simulation results demonstrate the good tracking characteristics of the proposed control scheme in the presence of inertial uncertainties and external disturbances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.