Abstract

AbstractThe three‐axis attitude tracking control problem in the presence of parameter uncertainties and external disturbances for a spacecraft with flexible appendages is investigated in this paper. Novel simple robust Lyapunov‐based controllers that require only the attitude and angular velocity measurement are proposed. The first controller is a discontinuous one composed of a nonlinear PD part plus a sign function, whereas the second one is continuous or even smooth by modifying the discontinuous part of the first one. For a general desired trajectory, both controllers can achieve globally asymptotic stability of the attitude and angular velocity tracking errors instead of ultimate boundedness. By using a two‐step proof technique, the partial stability of the proposed controllers for the resulting closed‐loop systems in the face of model uncertainties and unexpected disturbances is proven theoretically. To further enhance the control performance, a continuous controller is presented that utilizes the tracking errors for estimating the external disturbances. In addition, stability analysis is done. For all the developed controllers, numerical simulation results are provided to demonstrate their performance. Copyright © 2008 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call