Abstract

In this study, attitude control is proposed for helicopters with actuator dynamics. For the nominal helicopter dynamics, model-based control is firstly presented to keep the desired helicopter attitude. To handle the model uncertainty and the external disturbance, radial basis function neural networks are adopted in the attitude control design. Using neural network approximation and the backstepping technique, robust attitude control is proposed with full state feedback. Considering unknown moment coefficients and the mass of helicopters, approximation-based attitude control is developed for the helicopter dynamics. In all proposed attitude control techniques, multi-input and multi-output non-linear dynamics are considered and the stability of the closed-loop system is proved via rigorous Lyapunov analysis. Extensive numerical simulation studies are given to illustrate the effectiveness of the proposed attitude control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.