Abstract

This paper revisits the previously proposed linear asymptotic observer of the motion state variables with nonlinear friction and provides a robust design suitable for both, transient presliding and steady-state sliding phases of the relative motion. The class of motion systems with the only measurable output displacement is considered. The reduced-order Luenberger-type observer is designed based on the obtained simplified state-space representation with a time-varying system matrix. The resulted observation error dynamics proves to be robust and appropriate for all variations of the system matrix, which are due to the nonlinear spatially-varying friction. A specially designed tribological setup to accurately monitor the relative motion between two contacting friction surfaces is used to collect the experimental data of the deceleration trajectories when excited by a series of impulses. The performance of the state estimation using the proposed observer is shown based on the collected experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.