Abstract

Detecting obstacles in the rail track area is crucial for ensuring the safe operation of trains. However, this task presents numerous challenges, including the diverse nature of intrusions, and the complexity of the driving environment. This paper presents a multimodal fusion rail-obstacle detection approach by key points processing and rail track topology reconstruction. The core idea is to leverage the rich semantic information provided by images to design algorithms for reconstructing the topological structure of railway tracks. Additionally, it combines the effective geometric information provided by LiDAR to accurately locate the railway tracks in space and to filter out intrusions within the track area. Experimental results demonstrate that our method outperforms other approaches with a longer effective working distance and superior accuracy. Furthermore, our post-processing method exhibits robustness even under extreme weather conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.