Abstract
This paper uses the adaptive dynamic programming (ADP) method to achieve optimal trajectory tracking control for quadrotors. Relying on an established mathematical model of a quadrotor, the approximate optimal trajectory tracking control, which consists of the steady-state control input and the approximate optimal feedback control input, is designed for a nominal system. Considering the compound disturbances in position and attitude dynamic models, disturbance observers are introduced. The estimated values are used to design robust compensation inputs to suppress the effect of the compound disturbances for good trajectory tracking performance. Theoretically, the Lyapunov theorem demonstrates the stability of a closed-loop system. The robustness and effectiveness of the proposed controller are confirmed by the simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.