Abstract
Redundancy analysis is used to examine the interrelationships between two sets of variables, one set being dependent on the other. It aims to maximize the proportion of variance of the dependent variables that can be explained by each successive uncorrelated linear combination of the explanatory variables. It is an alternative to canonical correlation analysis when there is no symmetry in the variables. In this work, we study two different approaches to robustly estimate redundancy parameters. As a first approach, we consider a plug-in method based on robust correlation matrices capable of achieving simultaneously high efficiency under a Gaussian model and high resistance to outliers. As a second approach, we explore the relationship between redundancy analysis and multivariate linear regression and propose a method based on robust multivariate linear regression estimators. For elliptical distributions, the local robustness of the redundancy analysis based on robust scatter matrices is studied using the influence function. A simulation study shows that robust estimators perform better than the classical estimator and compares the proposals under contaminated samples. The performance of the proposals in a real data example is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.