Abstract

Identifying effective and valid surrogate markers to make inference about a treatment effect on long-term outcomes is an important step in improving the efficiency of clinical trials. Replacing a long-term outcome with short-term and/or cheaper surrogate markers can potentially shorten study duration and reduce trial costs. There is sizable statistical literature on methods to quantify the effectiveness of a single surrogate marker. Both parametric and nonparametric approaches have been well developed for different outcome types. However, when there are multiple markers available, methods for combining markers to construct a composite marker with improved surrogacy remain limited. In this paper, building on top of the optimal transformation framework of Wang etal. (2020), we propose a novel calibrated model fusion approach to optimally combine multiple markers to improve surrogacy. Specifically, we obtain two initial estimates of optimal composite scores of the markers based on two sets of models with one set approximating the underlying data distribution and the other directly approximating the optimal transformation function. We then estimate an optimal calibrated combination of the two estimated scores which ensures both validity of the final combined score and optimality with respect to the proportion of treatment effect explained by the final combined score. This approach is unique in that it identifies an optimal combination of the multiple surrogates without strictly relying on parametric assumptions while borrowing modeling strategies to avoid fully nonparametric estimation which is subject to the curse of dimensionality. Our identified optimal transformation can also be used to directly quantify the surrogacy of this identified combined score. Theoretical properties of the proposed estimators are derived, and the finite sample performance of the proposed method is evaluated through simulation studies. We further illustrate the proposed method using data from the Diabetes Prevention Programstudy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call