Abstract

Time synchronization is essential for quantum key distribution (QKD) applications, not only in fiber links and terrestrial free-space links but also in satellite-to-ground links. To compensate for the time drift caused by the Doppler effect and adapt to the unstable optical link in satellite-to-ground QKD, previous demonstrations adopted a two-stage solution, combining a global navigation satellite system (GNSS) and light synchronization. In this paper, we propose a novel aperiodic synchronization scheme that can achieve high-precision time synchronization by encoding time information into pseudo-random laser pulse positions. This solution can simplify the use of GNSS hardware, thus reducing the complexity and cost of the system. Successful experiments have been conducted to demonstrate the feasibility and robustness of the presented scheme, resulting in a synchronization precision of 208-222 ps even when 90% of the light signals are lost. Further analysis of the Doppler effect between the satellite and the ground station is also given. The presented robust aperiodic synchronization can be widely applied to future satellite-based quantum information applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.