Abstract

In this paper, we propose a robust linear discriminant analysis (RLDA) through Bhattacharyya error bound optimization. RLDA considers a nonconvex problem with the L1 -norm operation that makes it less sensitive to outliers and noise than the L2 -norm linear discriminant analysis (LDA). In addition, we extend our RLDA to a sparse model (RSLDA). Both RLDA and RSLDA can extract unbounded numbers of features and avoid the small sample size (SSS) problem, and an alternating direction method of multipliers (ADMM) is used to cope with the nonconvexity in the proposed formulations. Compared with the traditional LDA, our RLDA and RSLDA are more robust to outliers and noise, and RSLDA can obtain sparse discriminant directions. These findings are supported by experiments on artificial data sets as well as human face databases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.