Abstract

The switching between two spin states makes spin-crossover molecules on surfaces very attractive for potential applications in molecular spintronics. Using scanning tunneling microscopy, the successful deposition of [Fe(pap)2]+ (pap = N-2-pyridylmethylidene-2-hydroxyphenylaminato) molecules on Cu2N/Cu(100) surface is evidenced. The deposited FeIII spin-crossover compound is controllably switched between three different states, each of them exhibiting a characteristic tunneling conductance. The conductance is therefore employed to readily read the state of the molecules. A comparison of the experimental data with the results of density functional theory calculations reveals that all Fe(pap)2 molecules are initially in their high-spin state. The two other states are compatible with the low-spin state of the molecule but differ with respect to their coupling to the substrate. As a proof of concept, the reversible and selective nature of the switching is used to build a two-molecule memory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call