Abstract
Frequent queries on semi-structured hierarchical data are Content-and-Structure (CAS) queries that filter data items based on their location in the hierarchical structure and their value for some attribute. We propose the Robust and Scalable Content-and-Structure (RSCAS) index to efficiently answer CAS queries on big semi-structured data. To get an index that is robust against queries with varying selectivities, we introduce a novel dynamic interleaving that merges the path and value dimensions of composite keys in a balanced manner. We store interleaved keys in our trie-based RSCAS index, which efficiently supports a wide range of CAS queries, including queries with wildcards and descendant axes. We implement RSCAS as a log-structured merge tree to scale it to data-intensive applications with a high insertion rate. We illustrate RSCAS’s robustness and scalability by indexing data from the Software Heritage (SWH) archive, which is the world’s largest, publicly available source code archive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.