Abstract

Since measurements of process variables are subject to measurements errors as well as process variability, data reconciliation is the procedure of optimally adjusting measured date so that the adjusted values obey the conservation laws and constraints. Thus, data reconciliation for dynamic systems is fundamental and important for control, fault detection, and system optimization. Attempts to successfully implement estimators are often hindered by serve process nonlinearities, complicated state constraints, and un-measurable perturbations. As a constrained minimization problem, the dynamic data reconciliation is dynamically carried out to product smoothed estimates with variances from the original data. Many algorithms are proposed to solve such state estimation such as the extended Kalman filter (EKF), the unscented Kalman filter, and the cubature Kalman filter (CKF). In this paper, we investigate the use of CKF algorithm in comparative with the EKF to solve the nonlinear dynamic data reconciliation problem. First we give a broad overview of the recursive nonlinear data dynamic reconciliation (RNDDR) scheme, then present an extension to the CKF algorithm, and finally address the issue of how to solve the constraints in the CKF approach. The CCRNDDR method is proposed by applying the RNDDR in the CKF algorithm to handle nonlinearity and algebraic constraints and bounds. As the sampling idea is incorporated into the RNDDR framework, more accurate estimates can obtained via the recursive nature of the estimation procedure. The performance of the CKF approach is compared with EKF and RNDDR on nonlinear process systems with constraints. The conclusion is that with an error optimization solution of the correction step, the reformulated CKF shows high performance on the selection of nonlinear constrained process systems. Simulation results show the CCRNDDR is an efficient, accurate and stable method for real-time state estimation for nonlinear dynamic processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.