Abstract

This paper describes the synthesis of a robust and non-fragile H∞ observer-based filter design for a class of parameter uncertain system with polytopic uncertainties, disturbances, and gain variations. We present the sufficient condition for filter existence and the method for designing a robust and non-fragile H∞ filter by using LMIs (Linear Matrix Inequalities) technique. Because the obtained sufficient condition can be represented as PLMIs (Parameterized Linear Matrix Inequalities), which can generate infinite LMIs, we use the relaxation technique to find finite solutions for a robust and non-fragile H∞ filter. We show that the proposed filter can minimize the estimation error in terms of parameter uncertainties, filter-fragility, and disturbances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.