Abstract
In view of the serious perniciousness and complex diversity of actual wastewater systems, exploiting a robust and multifunctional adsorbent material featuring high sorption efficiency, broad-spectrum applicability, and excellent recyclability in treating multifarious pollutants in water (such as oils and fluoride ions) is highly required; however, it is still a daunting goal to pursue to date. In this work, novel mechanically robust and exceptional graphene oxide/hydroxyapatite nanowire (GO/HAPNW) aerogels (RGHAs/polydopamine (PDA)@RGHAs) with adjustable surface wettability were developed through a facile sol-gel self-assembly technology and subsequently optional bioinspired hydrophilic modification. Thanks to the reinforcing effect of HAPNWs with higher aspect ratio, a remarkably improved mechanical robustness (including superior compressibility and superelasticity) was acquired for the resulting aerogels. Based on the cooperative effect of the favorable selective wetting properties (i.e., hydrophobic/oleophilic for RGHAs) and the excellent mechanic stability, the aerogels displayed an outstanding sorption performance for diverse oils/organic solvents accompanied with a prominent recyclability. Specifically, a fairly high adsorption capacity of as high as 191 times of its own mass (for pump oil) was achieved based on a fast adsorption kinetic process. More importantly, superamphiphilic three-dimensional (3D) PDA@RGHAs revealed an extraordinary removal capability for water-soluble fluoride ions, exhibiting a superior equilibrium adsorption capacity (qe, 9.93 mg/g), which is distinctly superior to those of low-dimensional fluorine adsorbent materials recently reported. Accordingly, the as-prepared 3D aerogels combining both superior oil/organic solvent adsorption and excellent defluorination capability reveal a competitive application prospect toward effective intricate oily wastewater purification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.