Abstract
Two-dimensional (2D) black phosphorus (BP) materials, as the most promising building blocks for the development of artificial synapses, have attracted more and more attention. However, the instability of exfoliated 2D BP structures still remains a problem in the development of artificial synapse devices. In this study, the robust and low-power-consumption artificial-synaptic-based BP was successfully manufactured. The synapse devices have high stability in the air atmosphere and do not show obvious degradation over 3 months. The obtained devices not only implement the main function of synapses but also perform the function of dendritic neural synapses and simple logical operations, revealing their very strong learning behavior. The high mobility of 2D BP as well as the coupled effect and quantum confinement effect of the graphene oxide quantum dot (GOQD) can greatly boost the performance of BP-based synapse devices, such as low power consumption (62 pW) and high sensitivity (ultrasmall stimuli at an amplitude of -20 mV). Moreover, benefiting from the GOQD and the interaction between BP and graphene, the main dominated mechanism of the BP-graphene synapse device can be the capture and release of electrons by the 2D BP and GOQD instead of the conductive filament.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.