Abstract

The paper presents a method for designing low order robust controllers for stabilizing power system oscillations. The method uses polynomial control techniques. For single-input/single-output systems (SISO), the variability in operating conditions is captured using an interval polynomial. Kharitonov's theorem is then used to characterize a fixed order robust controller guaranteeing specified damping. This gives bi-linear matrix inequality (BMI) stability conditions which are solved using the BMI solver PENBMI. The effectiveness of the method is demonstrated by designing power oscillation damping (POD) controllers for single-, four-, and 16-machine power system models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.