Abstract
Most man-made environments, such as urban and indoor scenes, consist of a set of parallel and orthogonal planar structures. These structures are approximated by the Manhattan world assumption, in which notion can be represented as a Manhattan frame(MF). Given a set of inputs such as surface normals or vanishing points, we pose an MF estimation problem as a consensus set maximization that maximizes the number of inliers over the rotation search space. Conventionally, this problem can be solved by a branch-and-bound framework, which mathematically guarantees global optimality. However, the computational time of the conventional branch-and-bound algorithms is rather far from real-time. In this paper, we propose a novel bound computation method on an efficient measurement domain for MF estimation, i.e., the extended Gaussian image(EGI). By relaxing the original problem, we can compute the bound with a constant complexity, while preserving global optimality. Furthermore, we quantitatively and qualitatively demonstrate the performance of the proposed method for various synthetic and real-world data. We also show the versatility of our approach through three different applications: extension to multiple MF estimation, 3D rotation based video stabilization, and vanishing point estimation(line clustering).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on pattern analysis and machine intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.