Abstract

Flexible highly conductive fibers have attracted much attention due to their great potential in the field of wearable electronic devices. In this work, silk/PEDOT conductive fibers with a resistivity of 1.73 Ω·cm were obtained by oxidizing Ce3+ with H2O2 under alkaline conditions to produce CeO2 and further promote the in-situ polymerization of 3,4-ethylenedioxythiophene (EDOT) on the surface of silk fibers. The morphology and chemical composition of the silk/PEDOT conductive fibers were characterized and the results confirmed that a large amount of polythiophene was synthesized and deposited on the surface of silk fibers. The conductivity and electrochemical property stability of the silk/PEDOT conductive fibers were evaluated by soaping and organic solvent immersion, and the conductive silk fibers exhibited excellent environmental stability and durability. The silk/PEDOT conductive fibers show good pressure sensing and strain sensing performance, which exhibits high sensitivity, fast response and cyclability, and have excellent applications in personal health monitoring, human-machine information transmission, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call