Abstract

Boosting is a well known machine learning technique used to improve the performance of weak learners and has been successfully applied to computer vision, medical image analysis, computational biology and other fields. A critical step in boosting algorithms involves update of the data sample distribution, however, most existing boosting algorithms use updating mechanisms that lead to overfitting and instabilities during evolution of the distribution which in turn results in classification inaccuracies. Regularized boosting has been proposed in literature as a means to overcome these difficulties. In this paper, we propose a novel total Bregman divergence (tBD) regularized LPBoost, termed tBRLPBoost. tBD is a recently proposed divergence in literature, which is statistically robust and we prove that tBRLPBoost requires a constant number of iterations to learn a strong classifier and hence is computationally more efficient compared to other regularized Boosting algorithms. Also, unlike other boosting methods that are only effective on a handful of datasets, tBRLPBoost works well on a variety of datasets. We present results of testing our algorithm on many public domain databases and comparisons to several other state-of-the-art methods. Numerical results show that the proposed algorithm has much improved performance in efficiency and accuracy over other methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.