Abstract

In this paper, we present a robust image alignment algorithm based on matching of relative gradient maps. This algorithm consists of two stages; namely, a learning-based approximate pattern search and an iterative energy-minimization procedure for matching relative image gradient. The first stage finds some candidate poses of the pattern from the image through a fast nearest-neighbor search of the best match of the relative gradient features computed from training database of feature vectors, which are obtained from the synthesis of the geometrically transformed template image with the transformation parameters uniformly sampled from a given transformation parameter space. Subsequently, the candidate poses are further verified and refined by matching the relative gradient images through an iterative energy- minimization procedure. This approach based on the matching of relative gradients is robust against nonuniform illumination variations. Experimental results on both simulated and real images are shown to demonstrate superior efficiency and robustness of the proposed algorithm over the conventional normalized correlation method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.