Abstract

Polymer-based anti-reflective coatings (ARCs) on glass pose major challenges for outdoor photovoltaic applications due to their incompatible mechanical and thermal properties. Here we demonstrate durable, chemically and thermally stable polyhedral oligomeric silsesquioxane-based (POSS) anti-reflective moth's eye nanostructures on glass fabricated by double-side nanoimprint lithography. These anti-reflective nanostructures exhibited excellent broadband and quasi-omnidirectional anti-reflective properties. An optimum resist composition for nanoimprinting was obtained by mixing a methacryl POSS cage mixture with 1,6-hexanediol diacrylate in a 1 : 12 molar ratio. Thermal free radical co-polymerization during nanoimprint lithography produced a uniform array of moth's eye nanostructures on both sides of a glass substrate with yields ∼90 to 100%. The transmittance of the resulting glass was enhanced to 98.2% (reflectance 1.26%) with excellent quasi-omnidirectional transmittance observed from −50° to +50° of angles of incidence. Furthermore, a series of ASTM-based tests on the imprinted ARC structures showed strong adherence to glass, better hardness and mechanical strength with superior chemical and thermal stability, thus suggesting their strong potential for commercial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.