Abstract

Electrolysis of water has emerged as a prominent area of research in recent years. As a promising catalyst support, copper foam is widely investigated for electrolytic water, yet the insufficient mechanical strength and corrosion resistance render it less suitable for harsh working conditions. To exploit high-performance catalyst supports, various metal supports are comprehensively evaluated, and Ti6 Al4 V (Ti64) support exhibited outstanding compression and corrosion resistance. With this in mind, a 3D porous Ti64 catalyst support is fabricated using the selective laser sintering (SLM) 3D printing technology, and a conductive layer of nickel (Ni) is coated to increase the electrical conductivity and facilitate the deposition of catalysts. Subsequently, Co0.8 Ni0.2 (CO3 )0.5 (OH)·0.11H2 O (CoNiCH) nanoneedles are deposited. The resulting porous Ti64/Ni/CoNiCH electrode displayed an impressive performance in the oxygen evolution reaction (OER) and reached 30mAcm-2 at an overpotential of only 200mV. Remarkably, even after being compressed at 15.04MPa, no obvious structural deformation is observed, and the attenuation of its catalytic efficiency is negligible. Based on the computational analysis, the CoNiCH catalyst demonstrated superior catalytic activity at the Ni site in comparison to the Co site. Furthermore, the electrode reached 30mAcm-2 at 1.75V in full water splitting conditions and showed no significant performance degradation even after 60h of continuous operation. This study presents an innovative approach to robust and corrosion-resistant catalyst design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call