Abstract

The robust Capon beamformer has been shown to alleviate the problem of signal cancellation resulting from steering vector errors, caused, for example, by calibration and/or angle-of-arrival (AOA) errors, which would, otherwise, seriously degrade the performance of an adaptive beamformer. Here, we examine robust Capon beamforming of multidimensional arrays, where robustness to AOA errors is needed in both azimuth and elevation. It is shown that the commonly used spherical uncertainty sets are unable to control robustness in each of these directions independently. Here, we instead propose the use of flat ellipsoidal sets to control the AOA uncertainty. To also allow for other errors, such as calibration errors, we combine these flat ellipsoids with a higher dimension error ellipsoid. Computationally efficient automatic techniques for estimating the necessary uncertainty sets are derived, and the proposed methods are evaluated using both simulated data and experimental underwater acoustic measurements, clearly showing the benefits of the technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.