Abstract

Scaling all correlation (SAC) and multicoefficient correlation methods (MCCMs) have been shown to provide excellent ratios of accuracy to cost for the calculation of atomization energies. Inspired by this success, we have now fine-tuned the choices of correlation-energy levels and basis sets to determine the four most promising MCCMs and the most promising SAC method, and we optimized them against a larger and more diverse database than has previously been used for MCCM methods; the new database, called Database/3, consists of atomization energies, ionization potentials, electron affinities, and reaction barrier heights. The end results of this process are labeled as MCCM-version 3 (or MCCM/3) and SAC/3; the members of MCCM/3 are labeled MC-CO/3, MC-UT/3, MC-QCISD/3, and MCG3/3. The new methods are compared to other single-level ab initio methods, to hybrid density functional theory, and to the G3, G3S, and CBS-Q schemes. For neutral molecules, the mean unsigned error in atomization energies per bond usin...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.