Abstract

The actuator failure compensation problem is formulated for active vibration control of a rocket fairing structural-acoustic model with unknown actuator failures. Performance of a nominal optimal control scheme in the presence of actuator failures is studied to show the need of effective failure compensation. A robust control scheme and two adaptive control schemes are developed, which are able to ensure the closed-loop system signal boundedness in the presence of actuator failures whose failure pattern and values are unknown. The adaptive scheme for parameterizable failures ensures asymptotic stability despite failure uncertainties. Simulation results verified their failure compensation effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call